
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 9,833-853 (1989) 

INTERNAL WAVE REFLECTIONS AND TRANSMISSIONS 

OCCURRENCE OF EVANESCENT WAVES IN THE 
ARISING FROM A NON-UNIFORM MESH. PART 111: THE 

CRANK-NICOLSON LINEAR FINITE ELEMENT SCHEME 

B. CATHERS 
NSW Public Works Department. Hydraulics Laboratory, I lOB King Street, Manly Vale, NS W, Australia, 2093 

S. BATES 
British Gas Corporation, Engineering Research Station, Harvey Combe, Killingworth, PO Box ILH, Newcastle upon 

Tyne NE99 ILH, U.K.  

AND 

B. A. O’CONNOR 
Civil Engineering Department, Liverpool University, Brownlow Street, PO Box 147, Liverpool M9 3BX, U.K.  

SUMMARY 

The numerical scheme upon which this paper is based is the 1D Crank-Nicolson linear finite element scheme. 
In Part I of this series it was shown that for a certain range of incident wavelengths impinging on the interface 
of an expansion in nodal spacing, an evanescent (or spatially damped) wave results in the downstream region. 
Here in Part 111 an analysis is carried out to predict the wavelength and the spatial rate of damping for this 
wave. The results of the analysis are verified quantitatively with seven ‘hot-start’ numerical experiments and 
qualitatively with seven ‘cold-start’ experiments. Weare has shown that evanescent waves occur whenever the 
frequency of a disturbance at a boundary exceeds the maximum frequency given by the dispersion relation. In 
these circumstances the ‘extended dispersion’ relation can be used to determine the rate of spatial decay. 

In the context of a domain consisting of two regions with different nodal spacings, the use of the group 
velocity concept shows that evanescent waves have no energy flux associated with them when energy is 
conserved. 

KEY WORDS Fourier analysis Dispersion relation Reflected/transmitted evanescent waves 
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1.  INTRODUCTION 

This series of papers is aimed at gaining a better fundamental understanding of the processes at 
work when numerical schemes are applied to non-uniform meshes. 

Parts I and I1 were mainly concerned with the resulting waves which occur when an incident 
wave impinges on the interface of two regions with different nodal spacings.’, The transmitted 
waves have real wave numbers. Under certain conditions of mesh expansion, however, it was 
shown that the transmitted waves could have complex wave numbers which corresponded to 
transmitted waves which were exponentially damped (or growing) in space. Such damped waves 
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are the subject of the present paper. It is implicit that the term 'damped' in this work stands for 
damped in space and not in time unless stated otherwise. 

Throughout this work the subscripts 1 and 2 will refer to the upstream region 1 and the 
downstream region 2 respectively. 

2. COMPLEX WAVE NUMBERS 

When one incident wave or two incident waves with complementary wave numbers impinge on 
the interface between the two regions, it was shown in Part I, inequalities (22), that if the incident 
wavelength (L,)  was in the range 

(1) 
'II Ll 71 

tan- '{,/3[H' +, / ( IT2-  l)]} Axl tan-'{,"H'-,/(H'2- l)]} ' 

where H' = Ax2/Axl, then the transmitted waves would have complex wave numbers ( y 2 )  which 
can be calculated from the dispersion relation. The inequality (1) is presented in Figure 1. 

The dispersion relation is central to the analysis and there are two ways of using it. The two 
approaches are attributed to von Neumann and Weare and are schematized in Figure 2 using the 
dispersion relation. 

In a von Neumann type of analysis, the (possibly) complex wave frequency (w) is determined as a 
function of a real wave number (or). For fully centred numerical schemes the wave frequency is 
always real. For non-centred schemes the wave frequency is complex and, depending upon the 

<-< 

CONSISTENT MASS MATRIX 

-+- tan  ( X 1 / 2 1 = 6 ( H ' +  m) for - Q  2lr 3 
'61 

x1 
--- t a n  1$,/21=6( H'--) fo r  a > 3 

2 3 L 5 6 7 8 9 1 0  

WAVELENGTH/ NODAL SPACING IN REGION 1, 121T/al l  

Figure 1. Effect ofmesh size ratio (H') on the domains ofcomplex and real L ,  for the Crank-Nicolson linear finite element 
scheme 
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Figure 2. Temporal and spatial analyses using the dispersion relation ((a) and (b) respectively) 

sign of the imaginary part, there will be either exponential growth or damping in time of the 
Fourier component(s). This approach is the basis of the von Neumann stability analysis. 

Weare3 was the first to address the alternative analysis in which the (possibly complex) wave 
number (c) is determined as a function of a real wave frequency (a,) for fully centred schemes. 
Weare has also shown that a complex wave number corresponds to the exponential growth or 
damping in space of a Fourier wave component which is generated at an oscillating boundary. The 
applicability of the Weare analysis to the problem of mesh reflections can be seen if the interfacial 
node is viewed as the oscillating upstream boundary for region 2, which generates the transmitted 
wave also in region 2. 
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2. I .  ‘Extended’ dispersion relation 

The dispersion relation for a numerical scheme is found from a von Neumann Fourier analysis. 
For the Crank-Nicolson linear finite element scheme at Courant number (fT, the dispersion 
relation for a sinusoidal wave travelling in the + x-direction with dimensionless wave number 
y=aAx is well known and is given by 

1.5$ sin y 
tan (F) = 2+cosy‘ 

In equation (2) it has only been necessary to consider waves with positive phase velocity (i.e. w > 0), 
since it has already been shown in Part I’ that no waves with negative phase velocity arise from 
the analysis. 

For a given (Z, the maximum wave frequency occurs at y = 2z/3, i.e. 

w,,At = 2 tan- - (Y). (3) 

By making recourse to the dispersion relation, it can be shown that when the frequency at an 
oscillating boundary exceeds the maximum value in equation (3), the wave number becomes 
complex. First we rearrange equation (2) to yield 

where 

R = (  &)tan( F). 
Examination of the discriminant in equation (4) shows that y will be complex whenever 
R > 1/J3, i.e. 

Incorporating equation (3) 
exceeds w,,,, and y is then 

into the inequality (6), it is evident that y is complex whenever w 
given by 

The above expression is not amenable to evaluating the real and imaginary parts of y because of 
the tan( ) function on the left-hand side. A simpler approach when y is complex is to substitute 
y = yr + iy, into the dispersion relation, equation (2): 

l.5$sin(yI + iy,) 
2 + cos(y, + iy,) ’ 

tan (F) = 

i.e. 

sin(y, + iy,) - sin yI cosh yi + i cos y, sinh y ,  R =  
2 + cos (yI + iy,) - 2 + cos yI cosh yi - i sin yI sinh yi ’ 

i.e. 
R(2 + cos yI cosh y,) - iR sin yr sinh y ,  = sin yI cosh yi + i cos yI sinh y ,  . 

(7) 
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This is a complex equation with two unknowns, y, and yi. 
Equating the imaginary parts leads to 

i.e. 
sinh yi(cos y ,  + R sin yr) = 0, 

yi  = 0 or tany, = - 1/R, 

and since y is complex, yi = 0 can be discarded, leaving tany, = - 1/R. 
Equating the real parts leads to 

R(2 +cosy, coshy,) = siny, coshy,. 

Since tany,= - 1/R and by taking cognisance of the quadrant, it is found that 

- R  
cOsYr= m+R2) 

Substituting equations (9) and (10) into (8) gives 

Therefore 

2R 
y = y,+ i y i  = tan- 

Since the cosh( ) function is even, its inverse admits both a positive and a negative value. If  the 
solution of a dependent variable varies in time and space as 

e i ( o r  - a x )  - i(or - n.x) U I X  -e e 9  

where a = a, + ioi, it is evident that the positive value of ai (or yi) corresponds to an exponentially 
growing Fourier component in the +x-direction, while the negative value corresponds to an 
exponentially damped wave in the + x-direction. 

Equations (2) and (12) together are referred to as the ‘extended dispersion relation’ and have 
been plotted for the Courant numbers (T =0.1, 1, 10, 50 in Figure 3. Equation (2) is the ordinary 
dispersion relation, while equation (1  2) is its extension which permits the calculation of the real (a,) 
and imaginary (ai) components of the wave number when wmax is exceeded at a boundary. Figure 3 
shows the variation of the real and imaginary parts of the wave number with Courant number and 
angular frequency, and how the extension to complex wave numbers (i.e. short dashes in the figure) 
fits in with the ordinary dispersion relation. 

2.2. Calculation of the complex wave numbers in different regions 

We now return to the situation in which the 1D domain consists of two regions 1 and 2 which 
are physically identical (i.e. same depth and same fluid) but which are (cornpurationally) discernible 
only on the basis of having different nodal spacings (i.e. Ax, and Ax,). 

In Section 2.1 it was shown that it is possible under certain operating conditions to get complex 
wave numbers in either or both of the two regions. Attention is now focused on those situations 
where the wave numbers are complex in just region 2. 
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Figure 3. Extended dispersion relation for the Crank-Nicolson linear finite element scheme at Courant Numbers C=O.l, 
1.0, 10.0, 50.0 (left to right) 

2.2.1. Solving for complex y2 in terms of real yl. In the case of a mesh expansion, it has been 
shown in Section 3.3 of Part I that y z  can be complex (= yr+iyi) and y1 real. The situation is 
depicted in Figures 4(a) and qb). In region 1 the complementary real wave numbers are denoted 
by cA and oB. In region 2 the two complex wave numbers correspond to waves which grow (i.e. 
cr, + ici) or decay (i.e. or - io,) exponentially with space away from the origin (see Figure 4(a)). The 
dispersion relations for the two regions in Figure 4(b) show how the real components of the two 
complex wave numbers are the same but the imaginary parts are equal but opposite in sign. The 
incident waves A and B have real wave numbers since the wave frequency (w) is less than omax for 
region 1. The wave numbers in region 2 are complex because o is greater than omax in 

(from equation (3)). The two complex y z  values will now be found in terms of real yl, which can 
refer to either of the two complementary wave numbers in region 1, viz. yA = cr,Ax, or ye = oBAx, 
in Figure 4. 
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(b) 
Figure 4. The occurrence of complex wavenumbers due to a mesh expansion. (a) Waves present in the system for a mesh 
expansion-the wavenumbers present in Region1 are real while those in Region 2 are complex conjugates. (b) Schematics 

of the dispersion relation for Region 1 and the extended dispersion relation for Region 2 for A mesh expansion 

From the dispersion relation for the two regions, 

l.5(Tlsiny, - - l.5$T2sin(yr +iy,) 
2 +cosy, 2 + cos(y, + iy,) ' 

tan (7) = 

where y z = y r + i y i  and y1 =27c/(L1/Axl); i.e. 

sin(yr + iy,) 
2 + cos(y, + iy,) ' 

R' = 

where 

Hsiny 
R1=(  &)tan( ~ ) = * + c o s y ,  

and H ' =  AxzjAx,. 
The solution for y2  is similar to that for equation (12) and is 

y2 = yr +iy, =tan-' ( z ) + i  cosh-' (h). 
The case in which complex y1 is found in terms of real y2 is of less interest than finding complex 

y2 in terms of real y,. This is because the incident wave is exponentially growing or damped in 
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space. However, this is not to say that this situation is unlikely to be met in practice, because it may 
well occur where a mesh expansion is followed by a mesh refinement. 

It is the real part of the wave number which determines the wavelength@) of the transmitted 
wave(s). Since the real part of the transmitted wave numbef in equation (14) is the same 
irrespective of the imaginary part, it is clear that the wavelengths of the growing and damped 
transmitted waves are equal. (By combining the real part of equation (14) with the last part of 
equation (13) for R,, it is possible to relate the wavelength in region 1 (L,=2n/yl) to the 
wavelength in region 2 (L2 =2n/y, tsee the dashed line in Figure 3 of Part I.) The inverse tan( ) 
function is multivalued, but only one of these values corresponds to a resolvable wavelength, 
which must be greater than 2Ax2. 

These points are best illustrated by an example. All the numerical experiments with a mesh 
expansion had a mesh size ratio of H'=2. From inequality (1) this means that any incident waves 
with wavelengths between 2.2166Ax1 and 7.23O1Ax1 would give rise to waves in region 2, which 
had complex wave numbers. Consider a 4Ax, incident wave. From equation (14) the wave 
numbers of any transmitted waves would be 

y,=tan-l(;)+icosh-'( 2 x 1  ) 
rn 

=3n/4, 7n/4, 11n/4, 15n/4. . . ki(O.8814). 

The real part of y 2  corresponds to wavelengths of (8/3)Ax2, (8/7)Ax2, (8/1 l)Ax,, (8/15)Ax2 . . . and 
only the first value is taken since it is the only resolvable wavelength. If the exponentially growing 
wave is present it will amplify at the rate of exp(aix) =exp(08814x/Ax2), and if the damped wave is 
present it will decay at the rate of exp(-08814x/Ax2) in the positive x-direction. With this 
information on complex wave numbers, it is now possible to solve for the wave amplitudes. 

3. REFLECTION/TRANSMISSION ANALYSIS DUE TO A CHANGE IN MESH SIZE 

The assumed wave configuration consists of two incident waves ( A  and B) with real comp- 
lementary wave numbers in region 1 and a single spatially damped, evanescent transmitted wave 
(C) in region 2. The case with the damped wave was selected because it did not involve an, 
exponentially growing wave in region 2 and was therefore amenable to verification by numerical 
experiments and, owing to the downstream boundary condition, is the more likely to occur. The 
amplitude of the surface elevation at  the interfacial node is again denoted by a. 

The convention for labelling the two incident waves A and B is the same as was used in Part 11, 
i.e. wave A refers to the 'long' incident wave with a positive group velocity (i.e. LA 2  AX,) and 
wave B refers to its 'short'-wavelength complement (i.e. LB,<3Ax,) which has a negative group 
velocity. 

In region 1, where x < 0, the instantaneous surface elevation and velocity are given by 

3 (15) v(x, t )  = Aei(at -  AX) + Bei(at - ~ B X )  

in region 2, where x>O, they are 
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where oA and gB are the real wave numbers of waves A and B, and oc is the complex wavenumber 
of evanescent wave C; and at the interfacial node, where x=O, they are 

~ ( 0 ,  t )  = ere'"", (19) 

40, t )  = &/h) V(0,t). (20) 
Application of the Crank-Nicolson linear finite element method centred about x = O  to the 
momentum equation (see equation (29) of Part I) gives 

6 

+? 9 (,;->"+ V1- ' t -1  +; ( ) " = O .  

Substitution of equations (1 5)420) into the appropriate terms in equation (21) yields 

where 
, YA=GAAx~, YB=oBAx~, ~ c = n c k .  1 = eiWAt 

Since equations (15), (17) and (19) must be compatible at x=O for all times, 

A + B = a = C .  (23) 

Also, since the angular frequency w is the same in both regions, we have from the dispersion 
relation (equation (2)) 

(24) -=i( A- 1 
I - k I  2+COsyA 2 + cos yB 2 + cos yc 

l-5(CIsiny, )=i( 1 -5(t ,sky, )=i(  l.5(EC,sinyc ). 
Insertion of equations (23) and (24) into (22) to eliminate a, C and I and then simplifying leads to 

where 

1 +2cosy, 
2+cosy, . Ec = 

Therefore from equations (23) and (25)427) the solutions are 
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where yA is real, 

,,=tan-'( z)+i cosh-'( rn 2RA ) (from equation (14)), 

H'sin yA 
R A  = (from equation (1 3)). 

2 + cos y A  

Thus for an incident wave A with a real amplitude, the second incident wave ( B )  has complex 
amplitude but real wave number, and the transmitted evanescent wave (C) has complex amplitude 
and complex wave number. (It will be evident from equation (34) that a complex wave amplitude 
implies a phase lag or lead with respect to the incident wave.) 

The modulus of the amplitude of the transmitted wave, (CI, resulting from a unit incident wave 
( A  = 1) is given by equation (29) and is plotted as a finely dashed line in Figures 5-7 of Part I, where 
ICI is equal to lzll = Iz2(. 

4. 'HOT-START' NUMERICAL EXPERIMENTS 

The numerical model used to check the analysis was based upon the linear shallow water 
equations 

au a? 
-+g-=o, 
at ax 
a? au 
- + h  - =o. 
at ax (33)  

Seven numerical experiments were carried out with incident wavelengths for wave A varying 
between 3.0Ax1 and 7 . 2 3 6 ~ ~ .  This range was selected in order to give rise to a damped wave in 
region 2 (see Section 3.3 of Part I), as well as having an incident wave ( A )  with a positive group 
velocity. Both waves A and B are incident in terms of phase velocity but only wave A is incident in 
terms of group velocity. 

The initial conditions were as follows. In region 1 and at the interface (x < 0), 

> (34) 

(35) 

rl(x, t ) =  Aei (mr -a~x)  + pie' argB ei(mt-"ex) 

4x9 t )  = rib, t )  J(g/h), 

and in region 2 and at the interface (x 2 0), 
v(x, t )  = I Cjei argC ei("f - ~ c x )  

- 1 q e i  argC ei[mf - R e ( a c ) x ]  Im(ac)x e - 
3 

4x3 t )  = ?(X, t )  J(g/h), 

where 

A,  5A were data and are real 
B was defined by equation (28) and is complex 
r s B  = yB/Ax, is real and was related to oA by the equation 

tan(yA/2) tan(yB/2)= 

(see equation (20) of Part 11) 

(36) 

(37) 
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C is complex and was defined by equation (29) 
oc = yc/Ax, is complex and was defined by equation (30) 
Re( ) and Im( ) denote the real and imaginary parts. 

Thus, once the details of wave A are known, equations (34H37)  could then be used to set up the 
initial conditions. As for previous tests in Parts I and 11, the numerical model was run for some 
duration starting with the initial conditions and output was obtained at two later times. 

4.1. ‘Hot-start’ data used in the numerical experiments 

damping of wave C. The data are contained in Table I. 
A mesh size ratio of H = 2 was used in all seven tests. Tests 1-7 correspond to decreasing spatial 

4.2. Results and conclusions from the ‘hot-start’ numerical experiments 

The results for the seven tests are contained in Figures 5(akl l(a). It is clear that in each case the 
analysis matches the results from the numerical model since the differences between the two, which 
are denoted by a small triangle, are all zero at all times. 

From test 1 to test 7 the wavelength of wave A was progressively increased from 3.OAx1 to 
7 . 2 3 6 ~ ~ .  In the first test the two incident waves both had a 3.0Ax1 wavelength and were IC radians 
out of phase with each other, and therefore annihilated each other (see Figure 5(a)). In the second 
test (see Figure 6(a)) wave A (which had a real amplitude) had its wavelength increased to 3-01Ax1, 
while wave B (which had a complex amplitude) had its wavelength reduced to 2 . 9 9 6 ~ ~ .  When 
these two waves were superimposed, there was only the slightest discernible disturbance at the 
upstream end of region 2. 

Figure 7(a) contains the results of the third test in which the presence of a spatially damped wave 
in region 2 is easily noticeable. The wavelength of wave A was now 4 . 0 6 ~ ~ .  Figures 8(a)-ll(a) 
contain the results of tests 4-7 and the progression from a heavily damped wave in region 2 to a 
very lightly damped wave is clear. The amount of spatial damping in wave C is dictated by the 
term e’m(uc)x = e(’m(yc)/Axz)x in equation (36), where yc has been included in Table I below. It is seen 
that the maximum damping occurred in test 1 and the least damping was present in test 7 .  

With the results of the analysis verified, a parallel series of tests was undertaken, but this time a 
‘cold-start’ was used. 

5. ‘COLD-START’ NUMERICAL EXPERIMENTS 

In the ‘cold-start’ numerical experiments the initial conditions were specified by equations (34) and 
(35) for xd0. For x>O both the surface elevation and the velocity were set to zero. The 
Crank-Nicolson linear finite element model was used to predict the water levels and velocities at 
subsequent times. The data for the initial conditions which were used in the ‘cold-start’ tests will 
not be listed separately since they are already contained in Table I for the previous set of tests, with 
the only difference being that the complex wave amplitudes B and C were set to zero. The only 
wave data required were the wave amplitude (A = 1) and the wavelength (LA). 

5.1. Results and conclusions of the ‘cold-start’ numerical experiments 

The output from the seven ‘cold-start’ experiments is displayed in Figures 5(bbl l(b) below the 
corresponding ‘hot’ start tests of Section 4. In Figure 5(b) it is evident that in spite of a positive 
phase uelocity, the incident 3Ax, waves in region 1 have been unable to penetrate region 2. A small 
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Figure 5(b). Cold start numerical experiment witn initially only the incident waves A (3~oooOAx,) present 
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Figure @a). Hot start numerical experiment-waves present: incident waves A (3.0100Ax1) and B (2.9901Ax1), and 
damped transmitted wave C 

TIME- 0 O T  

llNE=1200 OT 

'EST CONOITIONS I OT= 0.2 IS1 , CELERITY= 1 .OO ( M I S )  , MEAN OEPTH=IIP.BI In1 CONSISTENT MASS LINEAR ELEMENTS 

v OENOTES THE RESIOUAL i NUMERICAL SOLUTION FROM MODEL - NWERICAL PREOICTION FROM ANALYSIS 
HS REGION 8 OX= b.0 IM) , COURANT N O . = 0 . 2 0 ,  L/DX= 3.0100, REFLECTION COEFFICIENT=( 0.OOOOoEM) , 0.00M)OEOO I 

HS REGION s OX= 2.0 tN> , COURANT N O . = o .  10, L/DX= 2.5660, TRANSMISSION COEFFICIENI=( O.oOOOOEoO , O.OOOOOEO0 8 

L lDXs  2.5880, TRANSMISSION COEFFICIENT= I 0.OOOOoEOO , 0.00DOOE00 I 

EXPERIMENTS FOR WAVE REFLECTIONS OUE TO A CHANGE IN MESH S IZE FOR THE SHALLOW WATER EQUATIONS 
~~ ~~~~ ~~ 

Figure qb). Cold start numerical experiment with initially only the incident waves A (3.0000Ax1) present 
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TIME. 0 OT 

TINE. 100 01 

lEST COMlTlONS I OT- 0 .2  (51 , CELERITY- 1 .OO W S I  , MEAN OEPTH=1/9.81 IH) CONSISTENT MASS LIMAR ELEKENTS 

v OEMTES THE RESIWAL = NUMERICAL SOLUTION FROM HOOEL - NUHERlCAL PREOICTION FROM ANALYSIS 
w REGION . DX. 1 .0  (ni , CLUJRANT H).. 0.20, L ~ X .  ).orno, EL. VAVE ARP, A- 1 . ~ 0 0  O.DX. i.57oa 

L/DX- 2.5152, REt. WAVE ABP, 8- f -0.7778 , -0.6285 I , O*DX= 2.4981 

W PEGION I OX- 2.0 (111 , COLWANT M.-0.10, L/DX- 2.6667, E L .  VAVE AMP, C- ( 0.2222 , -0.6285 I , o - O X -  t 2.3562 , -0.8814 I 

LIOY. 2.6667, EL. WAVE AMP, D= ( 0 . 0 0  , O.WO0 I , o.OX= 1 2.3562 , 0.8814 I 

EXPERIMENTS FOR WAVE REFLECTIONS DUE TO A CHANGE I N  MESH SIZE FOR THE SHALLOW WATER EQUATIONS 

Figure 7(a). Hot start numerical experiment-waves present: incident waves A (4Gf)OOAx,) and B (2.5152Ax1), and 
damped transmitted wave C 

TIME- 0 01 

TIME=1200 OT 

EST COMITIONS I 01. 0.2 (Sl , CELERITY. 1 .OO W S I  , MEAN OEPTH=1/9.81 M I  CONSISTENT MASS LINEAR ELEMENTS 

w OEMTES THE RESIWAL = NUMERICAL SOLUTION FROM HOOEL - NWERICAL PREDICTION FRON ANALYSIS 
i S  REGION n OX= 1.0 (HI , COURANT N 0 . = 0 . 2 0 ,  L/OX= 4.0000. REFLECTION COEFFICIENT=( 0.00OOoEW , 0.00000E00 I 
i S  REGION I OX= 2 .0  (MI , COURANT N O . = O . l O ,  L/DX= 2.6667, TRANSMISSION COEFFICIENT=( 0.OOOOoEOO , 0.00000E00 I 

L/DX= 2.6667, TRANSHISSION COEFFICIENT= ( 0.WOOoEW , O.OOWOEO0 ) 

!XPERIMENTS FOR WAVE REFLECTIONS DUE TO A CHANGE I N  MESH SIZE FOR THE SHALLOW WATER EQUATIONS 

Figure 7(b). Cold start numerical experiment with initially only the incident waves A (4.0000Ax1) present 
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TIME- 0 OT 

- 

TIME= 200 01 

EST COWITIONS I DT= 0.2 (SI , CELERITY= 1 .Do (M/SI , MEAN OEPTH=I/9.81 (MI CONSISTENT MASS LINEAR ELEMENTS 

D OEWTES THE RESIDUAL = NUMERICAL SOLUTIDN FROM MOOEL - NUIERICAL PREOICTION FROM ANALYSIS 

OWOX. 0.8976 I OX= 1.0. I M I  , COURANT M.. 0.20, L/OX- 7.0000. REL. WAVE WP, A- I .OOOO 

L/OX* 2.2255, REL. VAVE AMP, 8- I 0.8355 , -0.5495 I , O d X -  2.823: 
I ox- 2.0 cni , COURANT NO.- 0 . 1 0 ,  LIOX- 2.9802.  REL. WAVE AMP, c- ! I ,8355 , -0.5495 I , o .OX- 1 2. 1083 , -0.21 as I 

L/OX= 2.9802, REL. WAVE AMP. 0. I 0.0000 . 0.0000 I . o d X =  I 2.1083 . 0.2185 I 
~~ ~~~~~ 

iXPERIMENTS FOR WAVE REFLECTIONS DUE TO A CHANGE I N  MESH S IZE FOR THE SHALLOW WATER EQUATIONS 

Figure 8(a). Hot start numerical experiment-waves present: incident waves A (7~oooOAx,) and B (2.2255Ax1), and 
damped transmitted wave C 

TINE- 0 DT 

T IME= 600 O f  

TINE=I200 OT 

EST COWITIONS I DT= 0. 2 (SI , CELERITY. I .OO M/Sl , NEAN OEPTH=1/9.81 It41 CONSISTENT MASS LIMAR ELEKNTS 

o OENDTES THE RESIOUAL = NUNERICAL SOLUTION FROH NOOEL - NWERICAL PREDICTION FROH ANALYSIS 
HS REGION I OX= 1 .O (MI , COURANT NO.=O.ZO, L/DX= 7.0000, REFLECTION COEFFICIENT=( O.OOOOofDo , 0.00000E00 I 
HS REGION 3 OX; 2.0 W l  , COURANT NO. = 0. l o ,  L/OX= 2.9802, TRANSMISSION COEFFICIENT= ( O.OOOOOE00 , 0.00000E00 I 

L/OX= 2.9802, TRANSMISSION COEFFICIENT= ( O.OOOOoE00 , 0.00000E00 I 

!XPERIMENTS FOR WAVE REFLECTIONS DUE TO A CHANGE I N  MESH S I Z E  FOR THE SHALLOWWATER EQUATIONS 

Figure 8(b). Cold start numerical experiment with initially only the incident waves A (7~oooOAx1) present 
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TIME- 10001 

TEST COFalTlONS I 01. 0.2 IS1 , CELERITY= 1 .OO tM/Sl , MEAN OEPTH=I/P.EI IN1 CONSISTENT MASS LINEAR ELEMENTS 

o DEMTES THE RESIDUAL = NUMERICAL SOLUTION FROM MOOEL - NWERICAL PREOICTIDN FROM ANALYSIS 
f f i  REGION I OX- 1.0 (HI , COLWANT K).-0.20, LIDX- 7.2201, REL. WAVE AMP, A- 1.0000 0 *OX* 0.8702 

LIOX- 2.2170 ,REL. WAVE AW, 6- I 0.9928 , - 0 . 1 2 ~  I , O-OX. 2.8342 

ti5 REGION I OX- 2.0 In1 , COURANT No.- 0.10, L/DX- 2.9W2, REL. WAVE AU?, C- ( I.9928 , -0.1200 I , 0 .OX- t 2.0950 , -0.0451 I 

L/OX. 2.P992 ,REL. WAVE AW, 0- I O.WO0 , 0.0000 I , 0 .OX. I 2.0950 , 0.0451 1 

EXPERIMENTS FOR WAVE REFLECTIONS DUE TO A CHANGE I N  MESH S IZE FOR THE SHALLOWWATER EQUATIONS 

Figure 9(a). Hot start numerical experiment-waves present: incident waves A (7.2201AxJ and B (2.2170AxI), and 
damped transmitted wave C 

TIME-  0 01 

*- 
TEST COMlTlONS I 01. 0. 2 IS1 , CELERITY= I .oo W S J  , MEAN OEPTH=1/9.81 IMI CONSISTENT MASS LINEAR ELEMENTS 

v OEMTES THE RESIDUAL = NUMERICAL SOLUTION FROM MOOEL - NUMERICAL PREDICTION FROM ANALYSIS 
HS REGION I OX= 1.0 I M l  , COURANT NO.=O.20, L/OX= 7.2201, REFLECTION COEFFICIENT.1 0.00000E00 , 0.00@00E00 i 

HS REGION 8 OX= 2.0 IMJ , COURANT NO.=O. 10, L/OX= 2.9992, TRANSMISSION COEFFICIENl=t 0.00000E00 , 0.00000E00 1 

L IOX- 2.9992, TRANSMlSSlOH COEFFICIENT= ( O.OOOOOEO0 , 0.00000E00 I 

EXPERIMENTS FOR WAVE REFLECTIONS 0UE.TO A CHANGE I N  MESH S IZE FOR THE SHALLOW WATER EQUATIONS 

Figure 9(b). Cold start numerical experiment with initially only the incident waves A (7 .22016~~)  present 
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TIME=ZOOOT 
P 

.EST CONOITIONS I DT= 0. 2 (51 , CELERITY= 1.00 W S I  , MEAN OEPTH=1/9.81 (N) CONSISTEN1 M S S  LINEAR ELEMENTS 

P DENOTES THE RESIDUAL = NUMERICAL SOLUTION FROM MOOEL - NUMERICAL PREDICTION FROM ANALYS!S 

- I OX= 1.0 IN1 , COURANT NO.= 0.20, L/DX= 7.2280, REL. Y A V E  AMP, A= 1.0000 a.0~. o . e m  
L/DX- 2.2167. REL. UAVE AHP, 6; I 0.9985 , -0.0546 1 , o d X =  2.8345 

- I OX- 2.0 I M l  , COURANT NO.- 0.10, L/OX- 2.9998, REL. YAVE AMP, C- I 1.9985 , -0,0546 I ~ O X O X -  I 2.0945 , -0.0205 I 

LIOX- 2.9998, REL. YAVE AMP, 0; I 0.0000 , 0,0000 1 , OWOX= 1 2.0945 , 0.0205 I 

EXPERIMENTS FOR WAVE REFLECTIONS DUE TO A CHANGE I N  MESH S lZE  FOR THE SHALLOW WATER EQUATIONS 

Figure lqa). Hot start numerical experiment-waves present: incident waves A (7.2280Ax,) and B (2,2167AxI), and 
damped transmitted wave C 

TINE= 0 OT 

TIME=I200 DT $$ , * .: 

EST CONDITIONS Or= 0.2 IS) , CELERITY= I .OO t W S 1  , MEAN OEPTH=I/9.81 IN1 CONSISTENT MASS LINEAR ELEMENTS 

v DENOTES THE RESIOUAL i NUMERICAL SOLUTION FROM MODEL - NUMERICAL PREOICTION FROM ANALYSIS 
HS REGION I O X =  I . O  tt41 , COURANT N 0 . = 0 . 2 0 ,  L/OX= 7.2280, REFLECTION COEFFICIENT=( O.OOODC€oO , 0 OOGOOEOG 1 

HS REGION x O X =  2.0 IHI , COURANT NO.=O. 10 ,  L/OX= 2.2167, TRANSMISSION COEFFICIENT=l 0.WOOOEW , 0.00000E00 1 

L/OX; 2 . 2 1  67, TRANSMISSION COEFFICIENT= I O.WOOMO0 , 0 00@@DE00 1 

FXPERIMENTS FOR WAVE REFLECTIONS DUE T O  A CHANGE I N  MESH S l Z E  FOR THE SHALLOW WATER EOLJATIONC 

Figure lqb). Cold start numerical experiment with initially only the incident waves A (7.72280Ax,) present 
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TIME- 0 OT 

TlME=2000~ 

, . . . . . . . . ~  
~~ 

TEST CONJITIONS I 01. 0 . 2  (Sl , CELERITY. 1 .OO lH/Sl , HEAN OEPTH:l/9.81 (HI CONSISTENT MASS L I M A R  ELEMENTS 

o OENOTES THE RESIDUAL = NUHERICAL SOLUTION FROH HodEL - N U I E R I C K  PREOICTION FROH ANALYSIS 
tffi EGIDN , ox- 1 .0  on) , CGWNT m.. 0.20, L/OX. 7.2500. EL. YAVE AW, A- 1.0000 ov0X- 0.8690 

L/DX- 2.2166, REL. YAVE MP, 8- I I.WO0 , -0.0086 I , O.OX= 2.8346 

itis REGIM , ox- 2.0 mi , CWRNT m.- 0.10, LIOX. s.oo00, REL. WE w, c. I 2.~00 , -0.0086 I , O=DX- i 2.0944 , -0.0032 I 
L/DX. 3.0aaa. EL. WE MP, 0. 1 o.owo , o.ww I , 0.0~- 1 2.0944 , 0.0032 I 

EXPERIMENTS FOR UAVE REFLECTION5 DUE TO A CHANGE I N  MESH S IZE FOR THE SHALLOVWATER EQUATIONS 

Figure 1 l(a). Hot start numerical experiment-waves present: incident waves A (7.2300Ax1) and B (22166Axl), and 
damped transmitted wave C 

TIME-  0 OT 

TlME=600 OT 

E S T  CONlITlONS I 01- 0 .2 (Sl , CELERITY-I .oo W S I  , MEAN OEPTH=1/9.81 (MI CONSISTENT MASS LINEAR ELEMENTS 

v DENOTES THE RESIWAL I NUHERICAL MLUTION FROM NOOEL - NUIERIEAL PREOlCTlO?4 FROM ANALYSIS 
HS REGION x OX= 1.0 (I)) , CWRANT N O . = o . 2 0 ,  L/OX= 7.2300, REFLECTION COEFFICIENT=( 0.WOOoEOO , 0.00WOE00 ) 

'HS REGION I OX= 2.0 In1 , COURANT N O . = 0 . 1 0 ,  L/OX= 2.2166, TRANSHISSION COEFFICIENT=( 0.OOOOOECU , 0.00000E00 I 

L/OX= 2 . 2 1 6 6 ,  TRANSHISSION COEFFICIENT=l 0.oOOOOEOO , 0.0000OE00 1 

EXPERIMENTS FOR WAVE REFLECTIONS DUE TO A CHANGE I N  MESH SIZE FOR THE SHALLOW WATER EQUATIONS 

Figure ll(b). Cold start numerical experiment with initially only the incident waves A (7.2300Ax1) present 
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Table 1. Test data for the numerical experiments with an evanescent trans- 
mitted wave (C) 

Test I 
LA/Axl = 3-oooO 
L ~ A x ,  = 3.oooO 
R( Lc/Ax2) = 2.5879 

A =  1 
yc = 2.4279 - i(0.9730) 

B=-l+Oi 
C=O+Oi 
(see Figure 5(a)) 

Test 3 
LJAx,  =4.oooO 
L ~ A x  = 2.5 152 
R( LJAx,) = 2.6667 

A = l  
yc=2.3562-i(0%314) 

B = - 0.7778 - i(0.6285) 
C = 0.2222 - (0-6285) 
(see Figure 7(a)) 

Test 5 
LJAx,  =7.2201 
L,/Ax, = 2-21 70 
R(LJAx,) = 2.9992 
yc = 2.0950 - i(O.045 1) 
A = l  
B = 0.9928 - i(O.1200) 
C =  1.9928 -i(0-1200) 
(see Figure 9(a)) 

Test 7 
LA/Ax = 7.2300 
LB/Axl =2.2166 
R( LJAx2) = 3.oooO 
yc = 2.0944 - i(0.0032) 
A=l  
B = 1 - i(0.0086) 
C = 2 - i(00086) 
(see Figure 1 l(a)) 

~~~ ~~ 

Test 2 
LJAx,  = 3-0100 
L,/AX, = 2.9901 

yc = 2.4279 - i(0.9729) 
A = l  
B =  - 1 -0dlO93i 
C=O-O0093i 
(see Figure 6(a)) 

R(Lc/Ax2)=2.5880 

Test 4 
L Z =  79000 
L ~ A x ;  = 2.2255 
R( LJAx,) = 2.9802 
yc = 2.1083 - i(0.2185) 
A = l  
B = 0.8355 - i(0.5495) 
C = 1.8355 - i(0.5495) 
(see Figure 8(a)) 

Test 6 
L,/AX, = 7.2280 
LB/Ax = 2.2 167 
R( LC/Ax2) = 2.9998 
yc = 2.0945 - i(0.0205) 
A = l  
B = 0.9985 - i(0.0546) 
C = 1.9985 - i(0.0546) 
(see Figure lqa)) 

amount of energy has leaked into the downstream region after 600At and 1200At, but this is due to 
the fact that there are other Fourier components present in the initial set-up. These other 
components are due to the wave packet being semi-infinite. 

With only a slight increase in incident wavelength to 3.01AxI for the second test (see Figure qb)) 
there is little change in the results. 

In the third test (see Figure 7(b)) a small but persistent damped wave is visible in region 2, even 
after some energy has leaked through the interface, which is to be seen after 600At as a long low- 
amplitude wave packet. The similarity between the ‘hot’- and ‘cold’-start tests is clear from a 
comparison of Figures 7(a) and 7(b). 

Figures 8(bkl l(b) contain the results of the remaining ‘cold-start’ tests. After 1200At the 
resulting waveforms bear a reasonable resemblance to those in the ‘hot-start’ tests. If these tests 
could have been run for a longer duration, it is likely that the similarity in the waveforms between 
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the two sets of tests would have become more marked. The reason that the last few tests require a 
longer run time is that the wavelength in region 2 is close to a 3.oAx, wave, which is characterized 
by a zero group velocity and therefore requires a longer time to establish itself. 

6. ENERGY FLUX BALANCE 

In Section 3 the complex wave amplitudes B and C were calculated in terms of the incident wave 
amplitude A. If wave A has unit amplitude, then B and C are given by 

where 

1 + 2cos yc 
2+cosy, ' 

E ,  = 

y,=ta.'( G)+i cosh-'( rn' 2RA ) (30) 

(31) 
H'sin y, RA = 

2$-cosyA' 

Since yc is complex, B and C will also be complex. This indicates the existence of a phase shift in 
waves B and C with respect to the incident wave A.  The energy flux is given by the product of 
energy density and group velocity (see equations (50) and (51) of Part I) and for wave A this is 
given by 

1 p 2 A Z  1 + 2c0s [ 6h2 (2 +COSY,) j [ 3C cos2(oAt) 
(2 + cosyA)2 Eflux A =  ___ 

= ( $) 1 COSz(oAt) EA. (39) 

Similarly for wave B, 

= (5) IB(' COS2(dt) (- EA), 

where equation (26) has been used. 

and B are equal and opposite if JBJ = 1, and this will now be proven. 
A comparison of equations (39) and (40) shows that the energy fluxes associated with waves A 

In equation (28), since E,  is real and E, = a + ib (say) is complex, B can be expressed as 

E ,  -(a + ib) 
B =  

E, +(a + ib)' 
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If IBI = 1 in equation (41), then E A  and/or 'a' equals zero. Since E A  is not generally zero, then a=O 
and this implies that Ec would be purely imaginary. The truth of this can now be checked. 

Letting yc = yr + iyi, then 

1 + 2cos yi 
~ + C O S Y ~  

1 + ~ ( C O S  yr cosh y ,  + i sin yr sinh yi) 
~ + C O S Y ~  coshy,+i sin yr sinhy, ' 

E c = - - -  _- - 

lnserting equations (9HI 1) into equation (42) and simplifying gives 

E ,  = i,/(3RZ - l), 

where 

R =(&)tan (F). 
Since E ,  is purely imaginary, IB( = 1 and the energy fluxes due to waves A and B are equal and 
opposite. This means that if the energy fluxes balance across the interface, then the spatially 
damped wave C has zero energy flux associated with it. 

7. GENERAL CONCLUSIONS 

It has been demonstrated by analysis and experiment that if an incident wave ( A )  which has a 
wavelength in the range 

impinges on the interface of a mesh expansion, then an evanescent wave (C) will result in the 
downstream region. This wave is characterized by a complex wave number as well as a complex 
amplitude. The third wave present in the system is a short-wavelength wave (B) in the upstream 
region, which is incident in terms of phase but reflected in terms of energy (since it has a negative 
group velocity). This wave has a real wave number but a complex amplitude. The two incident 
waves in region 1 have complementary wave numbers which are related by equation (38). The 
energy flux balance is maintained between the two waves A and B in region 1. If energy is 
conserved across the interface, the damped wave C in region 2 does not transmit energy. 
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